Abrupt Climate Change

on Titan

Jeff Portwood B.S. Geophysics and Space Physics, UCLA CSI Intern

Outline

- * Brief survey of Titan
- * Motivation
- * Model
- * Radiation Scheme
- * Effects of Methane on Equilibrium Temperature
- * Future adjustments of Model

Titan

- * Saturn's largest moon
- * Thick atmosphere
 - * 95.1% N₂
 - * 4.9% CH₄
- * Hydrocarbon lakes near poles
- * Fluvial erosion features across the surface
 - * Methane rain
- * "Wet" versus "dry" climate

Motivation

- * Mitchell [2008] showed a possibility of multiple climate equilibria following abrupt climate change on Titan
- * I will further explore the effect that various levels of methane concentrations have on the dynamics of the atmosphere using a simpler one-dimensional mode
 - Model Hierarchy: step up for realism, step down for understanding

Mitchell [2008]

Model

- * One-dimensional radiative-convective model
 - Useful for modeling planetary heat budget
 - * Lacks horizontal heat transport and latitudinal redistribution of methane
- * Highlights the importance of the thermodynamics of methane evaporation and condensation

Dry Convection vs. Moist Convection

Temperature [K]

Abrupt Climate Transition

Addition/Removal of surface methane produces a transition in surface equilibrium temperature

Wet and Dry Temperature Profiles

Ts (dry) ~ 93 K Ts (wet) ~ 91 K

Future goals

- * Many parameters to be looked at in more detail
 - * Diffusion
 - * Boundary Layer
 - * Huygens fluxes
 - * McKay et al. 1991 in good agreement with Huygen's landing site
- * Increasing the speed of the model
 - * Each run takes ~7 hours
- * Build simplified two-dimensional model
 - * Allow for horizontal heat transport